Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

ARTICLE XIII.

Practical Rule for Calculating, from the Elements in the Nautical Almanac, the Circumstances of an Eclipse of the Sun, for a Particular Place. By John Gummere, Teacher of Natural Philosophy and Mathematics in the Friends' School at Haverford, Pennsylvania. Read March 6th, 1835.

The following rule, deduced from a known formula, gives, with little labour, the different circumstances of an eclipse of the sun, very nearly; the greatest error in time seldom exceeding half a minute. It also furnishes certain data that facilitate the exact calculation, when this is required. The multiplication of quantities by the sine, or cosine of an are or angle, is performed by a Traverse Table, as in Henderson's method of Predicting Occultations, given in the fourth volume of the Memoirs of the Astronomical Society of London. The rule is adapted to the use of the traverse tables usually contained in treatises on Surveying. In these tables, the difference of latitude and the departure are given for every quarter of a degree, of course, from 0° to 90°; and but little error results, if the required quantity is taken in the column corresponding to the course which is nearest to the given angle, without correction for the difference between the two. It is, however, easy to estimate and apply the proportional part, corresponding to this difference; and it is better to do so. When the voL. v.-3 z
given angle exceeds 90°, it must be subtracted from 180°, and the remainder taken as the course.

In calculating the parallaxes, the products of ten times the distance of the given place from the earth's centre, by the cosine and sine of its reduced latitude, are used. These products being constant for a given place, serve, when once obtained, for all calculations of eclipses of the sun, or of occultations for that place. Let them be denoted, respectively, by \mathbf{X} and \mathbf{Y}. Then, to obtain them, add respectively, to the logarithmic cosine and sine of the latitude of the place, the logarithms x and y, taken from Table I. of the annexed tables, with the latitude of the place as the argument, and reject 10 from the index of each sum. The results will be the logarithms of \mathbf{X} and \mathbf{Y}. These logarithms are used in the exact calculation of the parallaxes. The natural numbers corresponding to them, taken out to two decimal places, are the values of \mathbf{X} and \mathbf{Y}, that are used in the approximate calculation. These values are given in Table II. for each degree of latitude.

In the addition and subtraction of quantities, except those which are in time, the algebraic rules for performing these operations are to be observed. Wherever the rule directs the root of a quantity to be taken, it is the positive square root that is implied.

The quantities, denominated in the rule, parallaxes in right ascension and declination, are not strictly those quantities; they, however, differ but little from them, and are the quantities required in this method of calculation.

RULE.

1. Consider north declinations and north horary motions as + , and south ones as - . Find the difference of the sun's and moon's declinations, by subtracting the declination of the sun, as given in the elements, from that of the moon. In like manner find the difference of the horary motions of the sun and moon, in right ascension, the difference of their horary motions in declination, and the difference of their equatorial horizontal parallaxes.
2. Multiply the difference of the sun's and moon's declinations, re-
duced to seconds, by 10 , and divide the product by the difference of the parallaxes, also reduced to seconds, extending the quotient to two decimal places, and denote it by q. Do the same with the difference of the horary motions in right ascension, denoting the quotient by \mathbf{P}^{\prime}; with the difference of the horary motions in declination, denoting the quotient by q^{\prime}; and with the sun's semidiameter, denoting the quotient by r. With the moon's declination, as a course, and \mathbf{P}^{\prime} as a distance, enter the traverse table, and taking the corresponding difference of latitude, mark it + , and denote it by p^{\prime}. Then will $q, p^{\prime}, q^{\prime}$ and r, respectively express the difference of the declinations, the difference of the horary motions in right ascension, the difference of the horary motions in declination, and the sun's semidiameter, in such parts as the difference of the parallaxes contains 10 ; the difference of the horary motions in right ascension being reduced to the parallel of declination passing through the moon's centre. Let p denote the difference of the sun's and moon's right ascensions, expressed in similar parts, and reduced to the same parallel. At the time of conjunction in right ascension $p=0$.
3. Denote the Greenwich mean time of conjunction in right ascension by T. Find from the Nautical Almanac the corresponding equation of time, and apply it to T, so as to obtain the apparent time. To the apparent time apply the longitude of the given place from Greenwich, in time, by adding when the longitude is east, but subtracting when it is west, and convert the sum or remainder into degrees. If the result is less than 180°, it will be the hour angle at the time T, and will be + . If it exceeds 180°, subtract it from 360°, and the remainder will be the hour angle, and will be - . Denote the hour angle by H .

With the sun's declination as a course, and the value of \mathbf{Y} for the given place as a distance, enter the traverse table, and take the corresponding difference of latitude, marking it + when the latitude of the place is north, but - when it is south, and denote it by b. Take also the departure, marking it with the same sign as the declination when the latitude is north, but with a contrary sign when it is south, and denote it by f.
4. The values of $p^{\prime}, q^{\prime}, r, b$, and f, may be regarded as constant
during the continuance of the eclipse. But the value $p=0$, and the values of q and H, found as above, appertain only to the time T. To find them for another time T^{\prime}, proceed thus. As 60 minutes : diff. of T and $\mathrm{T}^{\prime}:: \boldsymbol{p}^{\prime}: p$. If T^{\prime} is later than T , the value of p is + , but if earlier, it is 一. Again, as 60 minutes : diff. of \mathbf{T} and $\mathrm{T}^{\prime \prime}:=\boldsymbol{q}^{\prime}:$ a quantity with the same sign as q^{\prime}, which, added to the value of q, at the time T, when ' T ' is later than T, but subtracted from it when T^{\prime} is earlier, will give the required value of q. Also, as 60 minutes : diff. of \mathbf{T} and $\mathbf{T}^{\prime}:: 15^{\circ}$: a quantity, which added to the value of \mathbf{H}, at the time T, when T^{\prime} is later than \mathbf{T}, but subtracted when it is earlier, will give the required value of H .
5. With the value of \mathbf{H}, at the time \mathbf{T}, as a course, and the value of \mathbf{X}, for the given place, as a distance, enter the traverse table, and take the corresponding departure, marking it with the same sign as H, and denoting it. by u. Take also the difference of latitude, marking it + , when H is less than 90°, but -, when H exceeds 90°, and denote it by \mathbf{C}. With the sun's declination as a course, and \mathbf{C} as a distance, find the departure, marking with the same sign as \mathbf{C} when the declination is + , but with a contrary sign when it is - , and denote it by c. Subtract c from b, and denote the result by v. Then will u and v be the parallaxes in right ascension and declination, at the time \mathbf{T}.

Using Table IV., add together the squares of $(p-u)$ and $(q-v)$, denoting the root of the sum, which need not however be taken out, by \mathbf{M}. Then will \mathbf{M} denote the apparent distance of the centres of the sun and moon, at the time \mathbf{T}.
6. Take a time \mathbf{T}^{\prime}, an hour earlier or later than \mathbf{T}, according as the value of $(p-u)$ at the time T , is + or - , and find for this time, by the preceding articles, the values of $p, q, \mathbf{H}, u, \mathbf{C}, c$, and v; and thence the square of the apparent distance of the centres, denoting the root by M^{\prime}.

Subtract, respectively, the values of $(p-u)$ and $(q-v)$ at the earlier of the times ' I and T^{\prime}, from their values at the later time, and denote the results by $\left(p^{\prime}-u^{\prime}\right)$ and $\left(q^{\prime}-v^{\prime}\right)$. Add together the squares of ($p^{\prime}-u^{\prime}$) and ($q^{\prime}-v^{\prime}$), and taking from the table the corresponding root, denote it by n. Then will n express the horary motion of the
moon from the sun on the apparent relative orbit. To the square of n add the square of \mathbf{M}, and from the sum subtract the square of \mathbf{M}^{\prime}, denoting the remainder by \mathbf{N}^{2}. Multiply \mathbf{N}^{2} by 30 , and divide the product by the square of n, extending the quotient to one decimal figure. This quotient will be an interval in minutes of time, which, being added to the time T , or subtracted from it, according as T^{\prime} is later or earlier than \mathbf{T}, will give the time of greatest obscuration.
7. Taking now ' \mathbf{T} ', to represent the time of greatest obscuration, find for this time the values of $p, q, \mathbf{H}, u, \mathbf{C}, c$, and v. Also, when taking c from the traverse table, take the corresponding difference of latitude, and marking it with the same sign as \mathbf{C}, denote it by g. With $(f+g)$ as the argument, take from Table IX., to two figures, the correction of r. Subtract this correction from r, and denote the remainder by r^{\prime}. To r^{\prime} add 2.73, the moon's reduced semidiameter, and denote the sum by k. Now adding together the squares of ($p-u$) and $(q-v)$, take the root of the sum, and denote it by m. Then will m express the least distance of the centres. Multiply $(k-m)$ by 6 , and divide the product by r^{\prime}. The quotient will express the digits eclipsed; on the northern limb if $(q-v)$ is + , but on the southern if it is -. If m is equal to, or greater than k, the eclipse will not be visible at the given place.

From the square of k subtract the square of m, and taking the root of the remainder, denote it by h. Then, as $n: h:: 60$ minutes : an interval of time, which being subtracted from the time of greatest obscuration, and added to it, will give approximate times of the beginning and end of the eclipse.
8. Taking T^{\prime} equal the approximate time of beginning, find as before, for this time, the values of $p, q, \mathbf{H}, u, \mathbf{C}, c, g, v, r^{\prime}$, and k. Also with the sun's declination as a course, and u as a distance, find the corresponding departure, marking it with the same sign as u, when the declination is + , but with a contrary sign when the declination is - , and denote it by \mathbf{E}. Then with \mathbf{C} and \mathbf{E}, respectively as arguments, take the corresponding quantities from Table III., marking each with the same sign as its argument, and denote them by u^{\prime} and v^{\prime}. Then will u^{\prime} and v^{\prime} express the horary changes of the parallaxes in right ascension and declination, at the time T^{\prime}.

From the square of k, subtract the square of m, and taking the root, denote it by h. Add together the squares of $(p-u)$ and $(q-v)$, and from the sum subtract the square of m. Take the root of the remainder, and denote it by h^{\prime}. Add together the squares of ($p^{\prime}-u^{\prime}$) and $\left(q^{\prime}-v^{\prime}\right)$, and taking the root of the sum, it will be the value of n, at the time \mathbf{T}^{\prime}. Then as $n: \operatorname{diff}$. of h and $h^{\prime}:: 60$ minutes : a correction, in minutes, which being added to ' \mathbf{T} ', or subtracted from it, according as h^{\prime} is greater or less than h, will give the corrected time of beginning.
9. The corrected time of end is found in exactly the same manner, except that the correction is to be subtracted from ' \mathbf{T}^{\prime}, the approximate time of end, when h^{\prime} is greater than h, but added to it when h^{\prime} is less than h.
10. From the values of $(p-u),(q-v), u$ and v, at the approximate time of beginning, find, by means of their horary changes ($\boldsymbol{p}^{\prime}-u^{\prime}$), ($q^{\prime}-v^{\prime}$), u^{\prime} and v^{\prime}, their values at the corrected time of beginning. Then taking the values of $(p-u)$ and $(q-v)$, divide the less by the greater, extending the quotient to three decimal places, and marking it + when the signs of $(p-u)$ and $(q-v)$ are alike, but - when they are different. Then with the quotient as the argument, take the corresponding arc from the proper column of Table V., as denoted by the remarks at the head of the table. If $(p-u)$ is + , denote this are by P, but if it is -, add 180° to the arc, and denote the sum by P. With the values of u and v, proceed in the same manner to find another arc, denoting it by Q, if u is + , but adding 180° to it if u is -, and denoting the sum by \mathbf{Q}. Subtract \mathbf{P} from \mathbf{Q}, increasing the latter by 360° when it is less than the former, and denote the remainder by V. Then will V express the distance from the sun's vertex to the point of the disc at which the eclipse commences, measured on the circumference of the disc, from the vertex to the right hand.
11. The times of beginning, greatest obscuration, and end, found as above, are expressed in Greenwich mean time, and may be changed to mean time of the given place, by adding or subtracting the difference of meridians in time, according as the place is east or west from Greenwich.

Note 1. The calculation will be facilitated by having two small
tables, containing the values of u and \mathbf{C}, for each degree of the hour angle, and b and f for each degree of declination, calculated for the place, from the expressions $u=\mathbf{X} \sin . \mathrm{H}, \mathrm{C}=\mathbf{X} \cos . \mathrm{H}, \boldsymbol{b}=\mathbf{Y}$ cos. Decl., and $f=\mathbf{Y} \sin$. Decl. These tables will also be equally convenient in the calculation of occultations. Tables VI. and VII. contain those values, calculated for the latitude of Philadelphia.
2. If only a near approximation to the circumstances of the eclipse is required, the value of r may be used instead of r^{\prime}, and the values of h and n at the time of greatest obscuration may be taken, in finding the corrected times of beginning and end. Also in finding the point of the sun's disc at which the eclipse commences, the values of ($p-u$), ($q-v$), u and v, at the approximate time of beginning, may be used without correction ; consequently, in this case f, g and E need not be found. The error thus produced in the time of beginning or end will seldom exceed a minute; and the error in the magnitude of the eclipse cannot amount to a tenth of a digit.

As an example, let it be required to calculate for Philadelphia, lat. $39^{\circ} 57^{\prime}$ N. long., 5 h .0 m .44 sec. W., the circumstances of the eclipse of November 30th, 1834.

$$
\text { For Philadelphia } X=7 \cdot 68 \text { and } Y=6.39
$$

In the following calculation, the values of b, f, u and \mathbf{C} are taken from Tables VI. and VII. ; the same values will, however, be easily obtained from the traverse table, with perhaps occasionally a difference of a unit in the last decimal figure.

From the elements in the Nautical Almanac we obtain :
Greenwich mean time of conjunc. in R. A., Nov. 30d. 6h. $32 \cdot 9 \mathrm{~m}$.
Moon's declination, - 20 $48^{\prime} 13^{\prime \prime}$
Sun's declination, - 214105
Sun's semidiameter, 1615
Diff. of sun's and moon's declinations, $=+52^{\prime} 52^{\prime \prime}=+3172^{\prime \prime}$
Diff. of their hor. motions in R. A., $=+3540=+2140$
Diff. of their hor. motions in declin., $=-848=-528$
Diff. of their eq. horizontal parallaxes, $=60 \quad 14=3614$

> h. m.

$$
\mathrm{T}^{\prime}=7 \quad 22 \cdot 4
$$

$$
p=+4 \cdot 57, q=7 \cdot 58, \mathrm{H}=+38^{\circ} \cdot 2
$$

$$
u=+4 \cdot 75, \quad \mathbf{C}=+6.03, \quad c=-2 \cdot 23, \quad g=+5 \cdot 54, \quad v=+8 \cdot 16
$$

$$
f+g=+3 \cdot 18, \quad r^{\prime}=2 \cdot 69, \quad k=5 \cdot 42
$$

$$
\begin{aligned}
& p-u=-0.18 \quad \text { sq. } 0.03 \\
& q-v=-0.58 \\
& \text { sq. } 0.34 \\
& m
\end{aligned}=0.61 \text { sq. } \overline{0.37}
$$

$$
\frac{6(k-m)}{r^{\prime}}=\frac{4 \cdot 81 \times 6}{2 \cdot 69}=10 \cdot 7=\text { digits eclipsed on southern limb. }
$$

$$
\begin{aligned}
& p=0, q=+\frac{3172 \times 10}{3614}=+8.78, \mathrm{P}^{\prime}=+\frac{2140 \times 10}{3614}=+5.92 ; \\
& p^{\prime}=+5 \cdot 54, \quad q^{\prime}=-\frac{528 \times 10}{3614}=-1 \cdot 46, \quad r=\frac{975 \times 10}{3614}=2 \cdot 70 . \\
& \text { h. m. } \\
& \text { T. . }=\text {. . } 632.9 \\
& \text { Eq. of time, . . }+11 \cdot 1 \quad b=+5.93 \\
& \text { Long. W. . . } \quad \begin{array}{rr}
6 & \mathbf{4 4 . 0} \\
5 & 0.7
\end{array} \quad f=-2.36 \\
& \text { H. . . . }+\overline{25^{\circ} .8} \\
& u=+3.34, \quad \mathrm{C}=+6.91, \quad c=-2 \cdot 55, \quad v=+8.48 . \\
& p-u=-3.34 \text { sq. } 11 \cdot 16 \\
& q-v=+0.30 \text { sq. } 0.09 \\
& \text { M. . . . sq. } 11 \cdot 25 \\
& \text { h. m. } \\
& \mathrm{T}^{\prime}=7 \quad 32.9 \\
& p=+5 \cdot 54, \quad q=+7 \cdot 32, \quad \mathrm{H}=+40^{\circ} \cdot 8 \\
& u=+5 \cdot 02, \quad \mathrm{C}=+5.81, \quad c=-2 \cdot 15, \quad v=+8.08 \\
& p-u=+0.52 \text { sq. } 0.27 \quad p^{\prime}-u^{\prime}=+3.86 \text { sq. } 14.90 \\
& q-v=-0.76 \text { sq. } 0.58 \quad q^{\prime}-v^{\prime}=+1.06 \text { sq. } \quad 1.12 \\
& \mathrm{M}^{\prime} \text {. . . sq. } \overline{0.85} \quad n=4.00 \quad \text {. sq. } \overline{16.02}
\end{aligned}
$$

> h. m. m. h. m.
> $632 \cdot 9+49 \cdot 5=7 \quad 22 \cdot 4=$ time of greatest obscuration.

$$
\begin{aligned}
& \text { h. m. h. m. h. m. } \\
& 722.4-120.8=6 \quad 1 \cdot 6=\text { approx. time of beginning, } \\
& 722 \cdot 4+120 \cdot 8=843 \cdot 2=\text { approx. time of end. } \\
& \text { h. m. } \\
& T^{\prime}=6 \quad 1 \cdot 6 \\
& p=-2 \cdot 89, \quad q=+9.54, \mathrm{H}=18^{\circ} \cdot 0, \quad u \quad=+2 \cdot 37, \quad \mathrm{C}=+7.30 \\
& c=-2 \cdot 70, \quad g=+6 \cdot 78, v=+8 \cdot 63, f+g=4 \cdot 42, \quad r^{\prime}=2 \cdot 68 \\
& k=5.41, \mathrm{E}=-0.88, u^{\prime}=+1.91, v^{\prime}=-0.24 \text {, } \\
& k=5 \cdot 41, \quad \text { sq. } 29 \cdot 27 \quad p-u=-5 \cdot 26 \quad \text { sq. } 27 \cdot 67 \\
& \begin{array}{lrlrl}
m & . & \text { sq. } & 0.37 \\
h= & 5 \cdot 38 & \text { sq. } \\
h=28.90
\end{array} \quad q-v=+0.91 \quad \text { sq. } \quad \frac{0.83}{28.50} \\
& m \text {. . . . sq. } 0 \cdot 37 \\
& \text { Diff. }=\frac{-2.30}{0.08} \quad h^{\prime} \quad=5 \cdot 30 \quad \mathrm{sq} . \quad 28 \cdot 13 \\
& \begin{array}{llr}
p^{\prime}-u^{\prime}=+3 \cdot 63 & \text { sq. } & 13 \cdot 18 \\
q^{\prime}-v^{\prime}=-1 \cdot 22 & \text { sq. } & 1 \cdot 49 \\
n \cdot 3 \cdot 83 & \text { sq. } & 14 \cdot 67
\end{array} \\
& \text { m. m. } \\
& 3.83: 0.08 \quad:: 60 \quad: 1.3 \\
& \text { h. m. m. h. m. } \\
& 61 \cdot 6-1 \cdot 3=60 \cdot 3=\text { corrected time of beginning. } \\
& \text { h. m. } \\
& \mathrm{T}^{\prime}=8 \quad 43 \cdot 2 \\
& p=+12.03, \quad q=+5 \cdot 61, \quad \mathrm{H}=58^{\circ} \cdot 4, \quad u=+6.54, \quad \mathrm{C}=+4.02 \\
& \begin{array}{lll}
c=-1 \cdot 49, \quad g=+3 \cdot 74, & v=+7 \cdot 42, \quad f+g=1 \cdot 38, \quad v^{\prime}=\quad 2 \cdot 69 \\
k= & 5 \cdot 42, \quad \mathrm{E}=-2 \cdot 42, \quad u^{\prime}=+1 \cdot 05, \quad v^{\prime}=\quad-0 \cdot 63,
\end{array} \\
& k=\quad 5 \cdot 42, \quad \text { sq. } 29 \cdot 38, \quad p-u=+5 \cdot 49, \quad \text { sq. } 30 \cdot 14
\end{aligned}
$$

$\begin{array}{llllr}m & \cdot & \cdot & \text { sq. } & 0 \cdot 37 \\
h^{\prime}= & \cdot & 5 \cdot 75, & \text { sq. } & \begin{array}{lll}33 \cdot 05\end{array}\end{array}$

$p^{\prime}-u^{\prime}=+4 \cdot 49$,	sq.	$20 \cdot 16$,	$h^{\prime}=$
$q^{\prime}-v^{\prime}=-0 \cdot 83$,	sq.	$0 \cdot 69$,	$h=$
			$5 \cdot 75$

$n=4 \cdot 57, \quad$ sq. $\overline{20 \cdot 85}, \quad$ Diff. $=\quad \overline{0.36}$.
m. m.
$4.57: 0.36 \quad:: \quad 60 \quad: \quad 4.7$
h. m. m. h. m.
$843 \cdot 2-4 \cdot 7=838 \cdot 5=$ corrected time of end.

VOI. V. -4 B
h. m.

At. $6 \quad 0.3$

$$
\begin{array}{r}
p-u=-5 \cdot 34, \quad q-v=+0.94, \quad u=+2 \cdot 33, \quad v=+8 \cdot 64 \\
\frac{q-v}{p-u}=\frac{+0.94}{-5 \cdot 34}=-.176 \quad \mathrm{P}=280^{\circ} \cdot 0 \\
\frac{u}{v}=\frac{+2 \cdot 33}{+8 \cdot 64}=+.269 \quad \mathrm{Q}=15^{\circ} \cdot 1 \\
\mathrm{~V}=\mathrm{Q}-\mathrm{P}=95^{\circ} \cdot 1
\end{array}
$$

Changing the Greenwich mean times into Philadelphia mean times, we have,
h. m.

Beginning,
$0 \quad 59 \cdot 6$
Greatest obscuration,
$2 \quad 21 \cdot 7$
End,
$\begin{array}{ll}3 & 37 \cdot 8\end{array}$

The first part of the calculation, by note 2 d to the rule, is the same as the preceding, except that f need not be found. The subsequent part, after the time of greatest obscuration is obtained, is as follows :-

$$
\begin{aligned}
& \text { h. m. } \\
& T^{\prime}=722 \cdot 4 \\
& p=+4 \cdot 57, q=+7 \cdot 58, \quad \mathrm{H}=+38^{\circ} \cdot 2 \\
& u=+4 \cdot 75, \quad \mathrm{C}=+6 \cdot 03, \quad c=-2 \cdot 23, \quad v=+8 \cdot 16 \\
& p-u=-0.18 \quad \text { sq. } 0.03 \\
& q-v=-0.58 \quad \text { sq. } 0.34 \\
& m=0.61 \quad \text { sq. } 0.37 \\
& \frac{6(k-m)}{r}=\frac{4 \cdot 82+6}{2 \cdot 70}=10 \cdot 7=\text { digits eclipsed. } \\
& k=5 \cdot 43 \quad \text { sq. } 29 \cdot 48 \\
& \boldsymbol{m} \\
& h=5 \cdot 40 \\
& \text { sq. } 0.37 \\
& \text { sq. 29•11 } \\
& \text { m. h. m. } \\
& 4 \cdot 00: 5 \cdot 40:=60: 1 \quad 21 \cdot 0 \\
& \text { h. m. h. m. h. m. } \\
& 722.4-1 \quad 21 \cdot 0=6 \quad 1.4=\text { approx. time of begin. } \\
& 722 \cdot 4+121 \cdot 0=843 \cdot 4=\text { approx. time of end. } \\
& \text { h. m. } \\
& \Gamma^{\prime}=6 \quad 1 \cdot 4 \\
& p=-2.91, q=+9.55, \mathrm{H}=17^{\circ} .9 \\
& u=+2 \cdot 36, \mathrm{C}=+7 \cdot 30, c=-2 \cdot 70, v=+8 \cdot 63
\end{aligned}
$$

$$
\begin{aligned}
& p-u=-5 \cdot 27 \quad \text { sq. } 27 \cdot 77 \\
& q-v=+0.92 \quad \text { sq. } 0.85 \\
& 28 \cdot 62 \\
& m \\
& h^{\prime}=5 \cdot 31 \\
& h=5 \cdot 40 \\
& \text { Diff. }=\overline{0.09} \\
& \text { m. m. } \\
& 4 \cdot 00: 0 \cdot 09:: 60: 1.3 \\
& \text { h. m. m. h. m. } \\
& 6 \quad 1 \cdot 4-1 \cdot 3=6 \quad 0 \cdot 1=\text { near approx. time of begin. } \\
& \text { h. m. } \\
& \mathrm{T}^{\prime}=8 \quad 43 \cdot 4 \\
& p=+12 \cdot 05, q=+5 \cdot 60, \mathrm{H}=58^{\circ} \cdot 4 \\
& u=+6.54, \mathrm{C}=+4.02, \quad c=-1 \cdot 49, v=+\mathbf{7 . 4 2} \\
& p-u=+5 \cdot 51 \quad \text { sq. } 30 \cdot 36 \\
& q-v=-1.82 \quad \text { sq. } 3.31 \\
& 33 \cdot 67 \\
& \boldsymbol{m} \\
& h^{\prime}=5 \cdot 77 \quad \text { sq. } \overline{33 \cdot 30} \\
& h=5.40 \\
& \text { Diff. }=\widehat{0.37} \\
& \text { m. m. } \\
& 4 \cdot 00: 0 \cdot 37:=60: 5 \cdot 5 \\
& \text { h. m. m. h. m. } \\
& 843 \cdot 4-5 \cdot 5=8 \quad 37 \cdot 9=\text { near approx. time of end. } \\
& \text { h. m. } \\
& \text { At } 6 \quad 1 \cdot 4 \\
& \frac{q-v}{p-u}=\frac{+0.92}{-5.27}=-174, \quad \mathrm{P}=279^{\circ} .8 \\
& \frac{u}{v}=+\frac{2 \cdot 36}{8 \cdot 63}=+\cdot 273, \mathrm{Q}=15^{\circ} \cdot 2 \\
& \mathrm{~V}=\mathrm{Q}-\mathrm{P}=95^{\circ} \cdot \mathbf{4}
\end{aligned}
$$

If it is required to find the times of beginning and end with greater precision than by the foregoing rule, let ' T ' represent the corrected Greeriwich mean time of beginning, taken to the nearest minute, and find from the Nautical Almanac the corresponding sidereal time, expressing it in arc. To the sidereal time thus expressed apply the longitude of the place, also in arc, by adding, if the longitude is east, but
subtracting if it is west, and denote the result by Z. Find also, for the time \mathbf{T}^{\prime}, the sun's right ascension in arc, denoting it by \mathbf{A}; the sun's declination, denoting it by \mathbf{D}; the moon's right ascension, in arc, denoting it by a; the moon's declination, denoting it by d; and the moon's equatorial horizontal parallax. 'Take the difference of the sun's and moon's parallaxes, and denote it by G. Also denote the sun's semidiameter by \mathbf{R}. Then find the values of p, q, r, u, and v, to four decimal places, by the following formulas.

$$
\begin{aligned}
p & =\frac{10 \sin \cdot(a-\mathrm{A}) \cos \cdot d}{\sin \cdot \mathrm{G}} \\
q & =\frac{10 \sin \cdot(d-\mathrm{D})}{\sin . \mathrm{G}}+\frac{1}{2} p \sin . \mathrm{D} \sin .(a-\mathrm{A}) \\
r & =\frac{10 \tan \cdot \mathrm{R} \cos \cdot(d-\mathrm{D}) \cos (a-\mathrm{A})}{\sin . \mathrm{G}} \\
u & =\mathrm{X} \sin (\mathrm{Z}-\mathrm{A}) \\
v & =\mathrm{Y} \cos \mathrm{D}-\mathrm{X} \sin . \mathrm{D} \cos \cdot(\mathrm{Z}-\mathrm{A})
\end{aligned}
$$

Find the value of g, for the time \mathbf{T}, as directed in the preceding rule, and with the argument $(f+g)$ take the correction of r from Table IX., and subtracting it from r, obtain r^{\prime}. Take the moon's semidiameter from Table VIII., with the equatorial parallax as the argument, and adding it to r ', the sum will be the value of k. The square of m, and the value of n, at the approximate time of beginning, found in the preceding calculation, although extending only to two decimal places, will be sufficiently accurate for the present calculation.

Using a common table of squares, and proportioning for the last two figures of the roots, find the values of h and h^{\prime}, as directed in article 8 of the foregoing rule, and thence a second correction; which being applied to T^{\prime}, as there directed, will give the true time of beginning.

A similar calculation for the corrected time of end, will give the true time of end.
'The corrected time of beginning of the eclipse just calculated, has been found to be $6 \mathrm{~h} .0 \cdot 3 \mathrm{~m}$. Take therefore $\mathrm{T}^{\prime}=6 \mathrm{~h} .0 \mathrm{~m}$. The sidereal time corresponding to this time is $339^{\circ} 7^{\prime} 22^{\prime \prime} .2$, expressed in arc. Hence for Philadelphia, long. $75^{\circ} 10^{\prime} 59^{\prime \prime} \mathrm{W}$., we have, $Z=263^{\circ}$ $56^{\prime} 23^{\prime \prime} .2$, at the time T^{\prime}. We also find $\mathrm{A}=246^{\circ} 21^{\prime} 7^{\prime \prime} .8, \mathrm{D}=$
$-21^{\circ} 40^{\prime} 51^{\prime \prime} .5, a=246^{\circ} 1^{\prime} 33^{\prime \prime} .1, d=-20^{\circ} 43^{\prime} 8^{\prime \prime} .1$, moon's parallax $=60^{\prime} 23^{\prime \prime} .3$, and $R=16^{\prime} 14^{\prime \prime} .8$.

Hence $\mathbf{Z}-\mathrm{A}=17^{\circ} 35^{\prime} 15^{\prime \prime}, a-\mathrm{A}=-19^{\prime} 34^{\prime \prime} .7, d-\mathrm{D}=$ $+57^{\prime} 43^{\prime \prime} .4$, and $\mathbf{G}=60^{\prime} 14^{\prime \prime} .6$.

With these values we obtain, $p=-3.0398, q=+9.5787$, $r=2.6965, u=+2.3195$, and $v=+8.6398$.

The value of g, for the time \mathbf{T}^{\prime}, is +6.80 , and consequently $(f+$ $g)=+4.44$. This gives 0.0210 for the correction of r. Hence $r^{\prime}=2 \cdot 6755$. The moon's semidiameter taken from Table VIII is 2.7315 ; consequently $k=5 \cdot 4070$. Then,

$k=5 \cdot 4070$		$\begin{aligned} p-u & =-5.3593 \\ q-v & =0.9389 \end{aligned}$	$\begin{aligned} & \text { sq. } 28.7221 \\ & \text { sq. } \quad 0.8815 \end{aligned}$
$h=5 \cdot 3727$	sq. 28.8657		29.6036
$h^{\prime}=5 \cdot 4068$		m	sq. $0 \cdot 3700$
Diff. $=0.0341$		$h^{\prime}=5 \cdot 4068$	sq. $29 \cdot 2336$
	: 0.0341 : : 60	$\begin{aligned} & \text { sec. } \\ & 3=32 \end{aligned}$	

Hence the true time of beginning is $6 \mathrm{~h} .0 \mathrm{~m} .32 \mathrm{sec} .$, in Greenwich mean time.

For the end take $T^{\prime}=8 \mathrm{~h} .38 \mathrm{~m}$. Then we shall find $\mathbf{Z}=303^{\circ}$ $32^{\prime} 52^{\prime \prime} .6, \mathrm{~A}=246^{\circ} 28^{\prime} 13^{\prime \prime} .3, \mathrm{D}=-21^{\circ} 41^{\prime} 55^{\prime \prime} .3, a=247^{\circ}$ $42^{\prime} 41^{\prime \prime} .8, d=-21^{\circ} 7^{\prime} 4^{\prime \prime} \cdot 3$, moon's parallax $=60^{\prime} 21^{\prime \prime} .6$, and as before $R=16^{\prime} 14^{\prime \prime} .8$. We also find $g=3.88$, and consequently $f+$ $g=1.52$.

Hence $p=+11.5373, q=+5.7414, r=2.6975, r^{\prime}=2.6903$, $k=5 \cdot 4218, u=+6.4435$ and $v=+\mathbf{7 . 4 7 8 2}$.

$k=5 \cdot 4218$	sq. $29 \cdot 3959$	$p-u=+5.0938$	sq. $25 \cdot 9468$
m	sq. $0 \cdot 3700$	$q-v=-1.7368$	sq. $\mathbf{3 . 0 1 6 5}$
$h=5 \cdot 3876$	sq. $29 \cdot 0259$		28.9633
$h^{\prime}=5 \cdot 3473$		m	sq. $0 \cdot 3700$
Diff. $=0.0403$		$h^{\prime}=5 \cdot 3473$	sq. $\mathbf{2 8 . 5 9 3 3}$

$$
4.57: 0.0403:: 60: 0.53=\frac{\mathrm{sec} .}{32}
$$

Hence the true time of end is 8 h .38 m .32 sec . in Greenwich vol. v .- 4 c
mean time. The true times of beginning and end, expressed in Philadelphia mean time, will be
h. m. sec.

Beginning,	0	59	48
End,	3	37	48

It thus appears that in the present example the time of beginning, as found in the foregoing rule, differs only 12 seconds from the true time, and that the time of end exactly corresponds with that obtained by the exact calculation.

In these calculations no allowance has been made for irradiation and inflexion. To make this allowance we must diminish k, by subtracting from it the quotient of ten times the assumed value of these quantities, divided by the difference of the parallaxes in seconds. If we assume an irradiation and inflexion, amounting to $5^{\prime \prime}$, its effect in the present eclipse will be to make the time of beginning, at Philadelphia, 13 seconds later, and the time of end 11 seconds earlier than as above obtained. Thus we should have
h. m. sec.

Beginning at	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
End at	$\mathbf{3}$	37	37.

	Logarithms x and y. Arg. Latitude of Place.	
Arg.	Log. x.	Log. y.
0°	1•00000	0.99718
2	$1 \cdot 00000$	0.99719
4	$1 \cdot 00001$	0.99719
6	$1 \cdot 00002$	0.99720
8	$1 \cdot 00003$	0.99721
10	1.00004	0.99723
12	$1 \cdot 00006$	0.99725
14	1.00008	0.99777
16	1.00011	0.99729
18	$1 \cdot 00013$	0.99732
20	1.00016	0.99735
22	1.00020	0.99738
24	1.00023	0.99742
26	1.00027	0.99745
28	1.00031	0.99749
30	1.00035	0.99754
32	1.00039	0.99758
34	1.00044	0.99762
36	1.00048	0.99767
38	$1 \cdot 00053$	0.99772
40	1.00058	0.99777
42	1.00063	0.99781
44	1.00068	0.99786
46	$1 \cdot 00073$	0.99791
48	$1 \cdot 00078$	0.99796
50	1.00082	0.99801
52	$1 \cdot 00087$	0.99806
54	$1 \cdot 00092$	0.99810
56	1.00097	0.99815
58	1.00101	0.99820
60	1.00105	0.99824
62	1.00110	0.99828
64	1.00114	0.99832
66	$1 \cdot 00117$	0.99836
68	1.00121	0.99839
70	1.00124	0.99843
72	$1 \cdot 00127$	0.99846
74	1.00130	0.99848
76	1.00133	0.99851
78	1.00135	0.99853
80	1.00137	0.99855
82	1.00138	0.99856
84	$1 \cdot 00139$	0.99858
86	1.00140	0.99859
88	1.00141	0.99859
90	1.00141	0.99859
Note.-In the calculation of the above Table, the earth's compression was assumed to be $\frac{1}{309}$.		

Values of X and Y for each Degree of Latitude.					rree of
Lat.	X.	Y.	Lat.	X.	Y.
0°	10.00	$0 \cdot 00$	45°	$7 \cdot 08$	$7 \cdot 04$
1	$10 \cdot 00$	$0 \cdot 17$	46	6.96	7•16
2	9.99	$0 \cdot 35$	47	6.83	-7.28
3	9.99	0.52	48	6.70	7-40
4	$9 \cdot 98$	$0 \cdot 69$	49	6.57	$7 \cdot 51$
5	9.96	0.87	50	6.44	$7 \cdot 63$
6	$9 \cdot 95$	1.04	51	$6 \cdot 31$	$7 \cdot 74$
7	9.93	$1 \cdot 21$	52	$6 \cdot 17$	$7 \cdot 84$
8	$9 \cdot 90$	$1 \cdot 38$	53	6.03	$7 \cdot 95$
9	$9 \cdot 88$	1.55	54	$5 \cdot 89$	$8 \cdot 06$
10	9.85	1.73	55	5.75	$8 \cdot 16$
11	$9 \cdot 82$	1.90	56	$5 \cdot 60$	$8 \cdot 25$
12	9.78	2.07	57	$5 \cdot 46$	$8 \cdot 35$
13	9.74	$2 \cdot 24$	58	$5 \cdot 31$	$8 \cdot 45$
14	9.70	$2 \cdot 40$	59	$5 \cdot 16$	8.54
15	$9 \cdot 66$	$2 \cdot 57$	60	$5 \cdot 01$	$8 \cdot 63$
16	$9 \cdot 62$	2.74	61	4.86	8.71
17	$9 \cdot 57$	2.91	62	4.71	8.79
18	9.51	$3 \cdot 07$	63	4.55	8.87
19	9-46	$3 \cdot 24$	64	$4 \cdot 40$	8.95
20	$9 \cdot 40$	$3 \cdot 40$	65	$4 \cdot 24$	9.03
21	$9 \cdot 34$	$3 \cdot 56$	66	$4 \cdot 08$	$9 \cdot 10$
22	9.28	$3 \cdot 72$	67	3.92	9•17
23	$9 \cdot 21$	3.88	68	$3 \cdot 76$	$9 \cdot 24$
24	9•14	$4 \cdot 04$	69	3.59	$9 \cdot 30$
25	$9 \cdot 07$	$4 \cdot 20$	70	$3 \cdot 43$	$9 \cdot 36$
26	899	$4 \cdot 36$	71	$3 \cdot 27$	9•42
27	8.92	4.51	72	3-10	9-48
28	8.84	$4 \cdot 67$	73	2.93	$9 \cdot 53$
29	8.75	$4 \cdot 82$	74	$2 \cdot 76$	9.58
30	8.67	4.97	75	$2 \cdot 60$	$9 \cdot 63$
31	$8 \cdot 58$	$5 \cdot 12$	76	$2 \cdot 43$	$9 \cdot 67$
32	$8 \cdot 49$	$5 \cdot 27$	77	$2 \cdot 26$	$9 \cdot 71$
33	$8 \cdot 39$	$5 \cdot 42$	78	$2 \cdot 09$	$9 \cdot 75$
34	$8 \cdot 30$	$5 \cdot 56$	79	1.91	9.78
35	$8 \cdot 20$	$5 \cdot 70$	80	1.74	$9 \cdot 81$
36	$8 \cdot 10$	$5 \cdot 85$	81	1.57	$9 \cdot 84$
37	$8 \cdot 00$	$5 \cdot 99$	82	1.40	$9 \cdot 87$
38	$7 \cdot 89$	$6 \cdot 12$	83	1.22	$9 \cdot 89$
39	7.78	6.26	84	1.05	9.91
40	$7 \cdot 67$	6.39	85	0.87	9.93
41	7.56	6.53	86	0.70	$9 \cdot 94$
42	$7 \cdot 44$	6.66	87	0.53	9.95
43	$7 \cdot 32$	6.79	88	0.35	9.96
44	$7 \cdot 20$	6.91	89	$0 \cdot 18$	9.97
45	$7 \cdot 08$	$7 \cdot 04$	90	0.00	$9 \cdot 97$

tion of the above Table the earth's compression
was assumed to be $\frac{1}{309}$.

TABLE III. Values of u^{\prime} and v^{\prime}. Arg. C for u^{\prime}. Arg. E for v^{\prime}.			
Arg. ${ }^{\text {u }}$	u^{\prime} or $v^{\prime} \mid$	Arg.	u^{\prime} or v^{\prime}
$0 \cdot 0$	$0 \cdot 00$	$5 \cdot 0$	$1 \cdot 31$
$0 \cdot 1$	0.03	$5 \cdot 1$	$1 \cdot 34$
0.2	$0 \cdot 05$	5.2	$1 \cdot 36$
$0 \cdot 3$	$0 \cdot 08$	$5 \cdot 3$	$1 \cdot 39$
$0 \cdot 4$	$0 \cdot 10$	$5 \cdot 4$	$1 \cdot 41$
0.5	$0 \cdot 13$	$5 \cdot 5$	1-44
0.6	$0 \cdot 15$	$5 \cdot 6$	$1 \cdot 47$
0.7	$0 \cdot 18$	5.7	$1 \cdot 49$
0.8	$0 \cdot 21$	$5 \cdot 8$	1.52
0.9	$0 \cdot 24$	$5 \cdot 9$	1.54
$1 \cdot 0$	$0 \cdot 26$	$6 \cdot 0$	1.57
$1 \cdot 1$	$0 \cdot 29$	$6 \cdot 1$	$1 \cdot 60$
$1 \cdot 2$	$0 \cdot 31$	$6 \cdot 2$	$1 \cdot 62$
1.3	$0 \cdot 34$	$6 \cdot 3$	1.65
$1 \cdot 4$	$0 \cdot 37$	$6 \cdot 4$	1.68
1.5	$0 \cdot 39$	6.5	1.70
1.6	$0 \cdot 42$	$6 \cdot 6$	1.73
1.7	$0 \cdot 45$	6.7	1.75
1.8	$0 \cdot 47$	$6 \cdot 8$	1.78
1.9	0.50	$6 \cdot 9$	1.81
$2 \cdot 0$	0.52	7.0	1.83
$2 \cdot 1$	0.55	$7 \cdot 1$	1.86
$2 \cdot 2$	0.58	$7 \cdot 2$	1.88
23	$0 \cdot 60$	$7 \cdot 3$	1.91
$2 \cdot 4$	$0 \cdot 63$	$7 \cdot 4$	1.94
$2 \cdot 5$	0.65	7.5	1.96
$2 \cdot 6$	$0 \cdot 68$	$7 \cdot 6$	1.99
2.7	0.71	$7 \cdot 7$	$2 \cdot 02$
2.8	0.73	$7 \cdot 8$	2.04
2.9	0.76	$7 \cdot 9$	$2 \cdot 07$
$3 \cdot 0$	0.79	$8 \cdot 0$	$2 \cdot 09$
$3 \cdot 1$	0.81	$8 \cdot 1$	$2 \cdot 12$
$3 \cdot 2$	$0 \cdot 84$	$8 \cdot 2$	$2 \cdot 15$
$3 \cdot 3$	0.86	$8 \cdot 3$	$2 \cdot 17$
$3 \cdot 4$	$0 \cdot 89$	$8 \cdot 4$	$2 \cdot 20$
$3 \cdot 5$	0.92	$8 \cdot 5$	$2 \cdot 23$
$3 \cdot 6$	0.94	$8 \cdot 6$	$2 \cdot 25$
$3 \cdot 7$	0.97	8.7	$2 \cdot 28$
$3 \cdot 8$	0.99	$8 \cdot 8$	$2 \cdot 30$
3.9	1.02	8.9	$2 \cdot 33$
$4 \cdot 0$	1.05	$9 \cdot 0$	$2 \cdot 36$
$4 \cdot 1$	$1 \cdot 07$	$9 \cdot 1$	$2 \cdot 38$
$4 \cdot 2$	1.10	$9 \cdot 2$	$2 \cdot 41$
$4 \cdot 3$	$1 \cdot 13$	$9 \cdot 3$	$2 \cdot 43$
$4 \cdot 4$	1.15	$9 \cdot 4$	$2 \cdot 46$
4.5	$1 \cdot 18$	9.5	$2 \cdot 49$
$4 \cdot 6$	1.20	$9 \cdot 6$	$2 \cdot 51$
4,7	$1 \cdot 23$	9.7	2.54
$4 \cdot 8$	1.26	$9 \cdot 8$	2.57
4.9	1.28	$9 \cdot 9$	2.59
$5 \cdot 0$	1.31	$10 \cdot 0$	$2 \cdot 62$

TABLE IV.
Squares of Numbers to two Decimal Places.

Root.	Square.	Root.	Square.	Root.	Square	Root.	Square.	Root.	Square.	Root.	Square.
$0 \cdot 00$	0.00	$0 \cdot 60$	$0 \cdot 36$	$1 \cdot 20$	$1 \cdot 44$	1.80	$3 \cdot 24$	$2 \cdot 40$	5.76	$3 \cdot 00$	9.00
$0 \cdot 01$	$0 \cdot 00$	$0 \cdot 61$	$0 \cdot 37$	$1 \cdot 21$	$1 \cdot 46$	1.81	$3 \cdot 28$	241	$5 \cdot 81$	$3 \cdot 01$	$9 \cdot 06$
0.02	$0 \cdot 00$	$0 \cdot 62$	$0 \cdot 38$	1.22	1-49	1.82	$3 \cdot 31$	$2 \cdot 42$	$5 \cdot 86$	$3 \cdot 02$	$9 \cdot 12$
$0 \cdot 03$	0.00	$0 \cdot 63$	$0 \cdot 40$	$1 \cdot 23$	1.51	1.83	$3 \cdot 35$	$2 \cdot 43$	$5 \cdot 90$	$3 \cdot 03$	$9 \cdot 18$
$0 \cdot 04$	0.00	$0 \cdot 64$	$0 \cdot 41$	$1 \cdot 24$	1.54	1.84	$3 \cdot 39$	$2 \cdot 44$	$5 \cdot 95$	3.04	$9 \cdot 24$
$0 \cdot 05$	$0 \cdot 00$	$0 \cdot 65$	$0 \cdot 42$	$1 \cdot 25$	1.56	1.85	$3 \cdot 42$	$2 \cdot 45$	6.00	$3 \cdot 05$	$9 \cdot 30$
0.06	$0 \cdot 00$	$0 \cdot 66$	$0 \cdot 44$	1.26	1.59	1.86	$3 \cdot 46$	246	6.05	$3 \cdot 06$	$9 \cdot 36$
0.07	$0 \cdot 00$	0.67	0.45	$1 \cdot 27$	$1 \cdot 61$	1.87	$3 \cdot 50$	$2 \cdot 47$	$6 \cdot 10$	3.07	$9 \cdot 42$
0.08	0.01	$0 \cdot 68$	$0 \cdot 46$	1.28	$1 \cdot 64$	1.88	3.53	$2+48$	$6 \cdot 15$	3.08	$9 \cdot 49$
0.09	0.01	0.69	$0 \cdot 48$	$1 \cdot 29$	$1 \cdot 66$	1.89	$3 \cdot 57$	2.49	6.20	$3 \cdot 09$	$9 \cdot 55$
$0 \cdot 10$	0.01	0.70	0.49	$1 \cdot 30$	1.69	1.90	$3 \cdot 61$	2.50	$6 \cdot 25$	$3 \cdot 10$	$9 \cdot 61$
$0 \cdot 11$	0.01	0.71	0.50	1.31	1.72	1.91	$3 \cdot 65$	2.51	$6 \cdot 30$	$3 \cdot 11$	$9 \cdot 67$
$0 \cdot 12$	0.01	0.72	0.52	1.32	1.74	1.92	$3 \cdot 69$	252	$6 \cdot 35$	$3 \cdot 12$	9.73
0.13	0.02	0.73	0.53	1.33	1.77	1.93	3.72	2.53	$6 \cdot 40$	$3 \cdot 13$	$9 \cdot 80$
$0 \cdot 14$	0.02	0.74	0.55	$1 \cdot 34$	1.80	1.94	3.76	$2 \cdot 54$	6.45	$3 \cdot 14$	$9 \cdot 86$
$0 \cdot 15$	0.02	0.75	0.56	$1 \cdot 35$	1.82	1.95	$3 \cdot 80$	$2 \cdot 55$	6.50	$3 \cdot 15$	9.92
$0 \cdot 16$	$0 \cdot 03$	0.76	0.58	$1 \cdot 36$	1.85	1.96	$3 \cdot 84$	2.56	6.55	$3 \cdot 16$	$9 \cdot 99$
0.17	0.03	0.77	0.59	1.37	1.88	1.97	$3 \cdot 88$	2.57	6.60	$3 \cdot 17$	10.05
0.18	0.03	0.78	0.61	1.38	1.90	1.98	$3 \cdot 92$	2.58	6.66	$3 \cdot 18$	$10 \cdot 11$
0.19	0.04	0.79	0.62	$1 \cdot 39$	1.93	1.99	$3 \cdot 96$	2.59	6.71	$3 \cdot 19$	10.18
0.20	0.04	0.80	0.64	1.40	1.96	2.00	$4 \cdot 00$	$2 \cdot 60$	6.76	$3 \cdot 20$	$10 \cdot 24$
0.21	0.04	0.81	0.66	1.41	1.99	2.01	4.04	2.61	6.81	$3 \cdot 21$	$10 \cdot 30$
$0 \cdot 22$	0.05	0.82	0.67	1.42	2.02	2.02	4.08	2.62	6.86	$3 \cdot 22$	$10 \cdot 37$
$0 \cdot 23$	0.05	0.83	0.69	1.43	$2 \cdot 04$	2.03	$4 \cdot 12$	2.63	6.92	$3 \cdot 23$	$10 \cdot 43$
0.24	0.06	0.84	0.71	1.44	2.07	2.04	$4 \cdot 16$	$2 \cdot 64$	6.97	$3 \cdot 24$	10.50
0.25	0.06	0.85	0.72	1.45	$2 \cdot 10$	2.05	$4 \cdot 20$	2.65	7.02	$3 \cdot 25$	1056
0.26	0.07	0.86	0.74	1.46	2.13	2.06	$4 \cdot 24$	2.66	7.08	$3 \cdot 26$	$10 \cdot 63$
$0 \cdot 27$	0.07	0.87	0.76	1.47	$2 \cdot 16$	2.07	$4 \cdot 28$	2.67	7.13	$3 \cdot 27$	10.69
$0 \cdot 28$	0.08	0.88	0.77	1.48	$2 \cdot 19$	2.08	$4 \cdot 33$	$2 \cdot 68$	7.18	$3 \cdot 28$	10.76
$0 \cdot 29$	0.08	0.89	0.79	1.49	$2 \cdot 22$	2.09	$4 \cdot 37$	$2 \cdot 69$	$7 \cdot 24$	$3 \cdot 29$	10.82
$0 \cdot 30$	0.09	0.90	0.81	1.50	$2 \cdot 25$	$2 \cdot 10$	$4 \cdot 41$	$2 \cdot 70$	$7 \cdot 29$	$3 \cdot 30$	$10 \cdot 89$
0.31	$0 \cdot 10$	$0 \cdot 91$	0.83	1.51	$2 \cdot 28$	$2 \cdot 11$	$4 \cdot 45$	$2 \cdot 71$	$7 \cdot 34$	$3 \cdot 31$	10.96
$0 \cdot 32$	$0 \cdot 10$	$0 \cdot 92$	0.85	$1 \cdot 52$	2.31	$2 \cdot 12$	$4 \cdot 49$	$2 \cdot 72$	$7 \cdot 40$	$3 \cdot 32$	11.02
$0 \cdot 33$	$0 \cdot 11$	$0 \cdot 93$	0.86	1.53	$2 \cdot 34$	$2 \cdot 13$	4.54	$2 \cdot 73$	$7 \cdot 45$	$3 \cdot 33$	11.09
$0 \cdot 34$	0.12	$0 \cdot 94$	$0 \cdot 88$	1.54	$2 \cdot 37$	$2 \cdot 14$	4.58	$2 \cdot 74$	7.51	$3 \cdot 34$	$11 \cdot 16$
$0 \cdot 35$	$0 \cdot 12$	$0 \cdot 95$	$0 \cdot 90$	$1 \cdot 55$	$2 \cdot 40$	2.15	$4 \cdot 62$	2.75	7.56	$3 \cdot 35$	11.22
$0 \cdot 36$	$0 \cdot 13$	0.96	0.92	$1 \cdot 56$	$2 \cdot 43$	$2 \cdot 16$	$4 \cdot 67$	$2 \cdot 76$	$7 \cdot 62$	$3 \cdot 36$	11.29
$0 \cdot 37$	$0 \cdot 14$	0.97	0.94	1.57	$2 \cdot 46$	$2 \cdot 17$	4.71	$2 \cdot 77$	$7 \cdot 67$	$3 \cdot 37$	$11 \cdot 36$
0.38	$0 \cdot 14$	0.98	$0 \cdot 96$	$1 \cdot 58$	2.50	$2 \cdot 18$	4.75	2.78	7.73	$3 \cdot 38$	11.42
$0 \cdot 39$	$0 \cdot 15$	0.99	0.98	1.59	$2 \cdot 53$	$2 \cdot 19$	$4 \cdot 80$	2.79	7.78	$3 \cdot 39$	11.49
$0 \cdot 40$	$0 \cdot 16$	1.00	$1 \cdot 00$	$1 \cdot 60$	2.56	$2 \cdot 20$	$4 \cdot 84$	$2 \cdot 80$	7.84	$3 \cdot 40$	11.56
$0 \cdot 41$	0.17	1.01	$1 \cdot 02$	$1 \cdot 61$	2.59	$2 \cdot 21$	$4 \cdot 88$	$2 \cdot 81$	7.90	$3 \cdot 41$	11.63
0.42	$0 \cdot 18$	1.02	$1 \cdot 04$	1.62	$2 \cdot 62$	$2 \cdot 22$	4.93	$2 \cdot 82$	7.95	$3 \cdot 42$	11.70
0.43	0.18	1.03	$1 \cdot 06$	1.63	$2 \cdot 66$	$2 \cdot 23$	4.97	2.83	8.01	$3 \cdot 43$	11.76
0.44	$0 \cdot 19$	1.04	1.08	1.64	$2 \cdot 69$	$2 \cdot 24$	5.02	$2 \cdot 84$	8.07	$3 \cdot 44$	11.83
0.45	0.20	1.05	$1 \cdot 10$	$1 \cdot 65$	$2 \cdot 72$	$2 \cdot 25$	5.06	$2 \cdot 85$	$8 \cdot 12$	$3 \cdot 45$	11.90
0.46	$0 \cdot 21$	1.06	$1 \cdot 12$	$1 \cdot 66$	$2 \cdot 76$	$2 \cdot 26$	5.11	$2 \cdot 86$	$8 \cdot 18$	$3 \cdot 46$	11.97
0.47	$0 \cdot 22$	1.07	$1 \cdot 14$	$1 \cdot 67$	2.79	$2 \cdot 27$	$5 \cdot 15$	$2 \cdot 87$	$8 \cdot 24$	$3 \cdot 47$	12.04
0.48	$0 \cdot 23$	1.08	$1 \cdot 17$	1.68	$2 \cdot 82$	$2 \cdot 28$	$5 \cdot 20$	2.88	$8 \cdot 29$	$3 \cdot 48$	$12 \cdot 11$
0.49	$0 \cdot 24$	1.09	$1 \cdot 19$	$1 \cdot 69$	$2 \cdot 86$	$2 \cdot 29$	$5 \cdot 24$	$2 \cdot 89$	8.35	$3 \cdot 49$	12:18
0.50	$0 \cdot 25$	$1 \cdot 10$	$1 \cdot 21$	1.70	$2 \cdot 89$	$2 \cdot 30$	$5 \cdot 29$	$2 \cdot 90$	$8 \cdot 41$	$3 \cdot 50$	$12 \cdot 25$
0.51	$0 \cdot 26$	$1 \cdot 11$	$1 \cdot 23$	1.71	2.92	$2 \cdot 31$	$5 \cdot 34$	2.91	$8 \cdot 47$	$3 \cdot 51$	$12 \cdot 32$
0.52	$0 \cdot 27$	$1 \cdot 12$	$1 \cdot 25$	172	2.96	$2 \cdot 32$	$5 \cdot 38$	$2 \cdot 92$	8.53	$3 \cdot 52$	$12 \cdot 39$
0.53	$0 \cdot 28$	1.13	$1 \cdot 28$	1.73	2.99	$2 \cdot 33$	$5 \cdot 43$	2.93	8.58	$3 \cdot 53$	$12 \cdot 46$
0.54	$0 \cdot 29$	1.14	$1 \cdot 30$	1.74	$3 \cdot 03$	$2 \cdot 34$	$5 \cdot 48$	$2 \cdot 94$	$8 \cdot 64$	$3 \cdot 54$	1253
0.55	$0 \cdot 30$	$1 \cdot 15$	$1 \cdot 32$	$1 \cdot 75$	3.06	$2 \cdot 35$	$5 \cdot 52$	$2 \cdot 95$	8.70	$3 \cdot 55$	$12 \cdot 60$
0.56	0.31	$1 \cdot 16$	$1 \cdot 35$	1.76	$3 \cdot 10$	$2 \cdot 36$	$5 \cdot 57$	$2 \cdot 96$	8.76	3.56	$12 \cdot 67$
0.57	$0 \cdot 32$	$1 \cdot 17$	$1 \cdot 37$	1.77	$3 \cdot 13$	$2 \cdot 37$	$5 \cdot 62$	2.97	8.82	$3 \cdot 57$	$12 \cdot 74$
0.58	$0 \cdot 34$	118	$1 \cdot 39$	1.78	$3 \cdot 17$	$2 \cdot 38$	$5 \cdot 66$	2.98	8.88	$3 \cdot 58$	$12 \cdot 82$
0.59 0.60	$0 \cdot 35$ 0.36	$1 \cdot 19$ $1 \cdot 20$	1.42	1.79 1.80	3.20 3.24	2.39 2.40	$5 \cdot 71$ 5.76	2.99 3.00	8.94 9.00	3.59	12.89
							$5 \cdot 6$	3.00	$9 \cdot 00$	$3 \cdot 60$	12.96

TABLE IV. CONTINUED.

Squares of Numbers to two Decimal Places.

Root.	Square	Root.	Square.	Root.	Square.	Root.	Square.	Root.	Square.
$3 \cdot 60$	12.96	4-20	$17 \cdot 64$	$4 \cdot 80$	23.04	$5 \cdot 40$	$29 \cdot 16$	$6 \cdot 00$	$36 \cdot 00$
$3 \cdot 61$	13.03	$4 \cdot 21$	17.72	$4 \cdot 81$	23-14	$5 \cdot 41$	$29 \cdot 27$	$6 \cdot 01$	$36 \cdot 12$
$3 \cdot 62$	$13 \cdot 10$	4•22	$17 \cdot 81$	$4 \cdot 82$	23.23	$5 \cdot 42$	$29 \cdot 38$	$6 \cdot 02$	36.24
$3 \cdot 63$	$13 \cdot 18$	$4 \cdot 23$	17.89	$4 \cdot 83$	$23 \cdot 33$	$5 \cdot 43$	$29 \cdot 48$	$6 \cdot 03$	$36 \cdot 36$
$3 \cdot 64$	13.25	$4 \cdot 24$	$17 \cdot 98$	$4 \cdot 84$	$23 \cdot 43$	$5 \cdot 44$	$29 \cdot 59$	$6 \cdot 04$	$36 \cdot 48$
3.65	13-32	$4 \cdot 25$	18.06	$4 \cdot 85$	$23 \cdot 52$	$5 \cdot 45$	29.70	6.05	$36 \cdot 60$
3.66	$13 \cdot 40$	$4 \cdot 26$	$18 \cdot 15$	$4 \cdot 86$	$23 \cdot 62$	$5 \cdot 46$	29.81	$6 \cdot 06$	36.72
$3 \cdot 67$	$13 \cdot 47$	$4 \cdot 27$	$18 \cdot 23$	$4 \cdot 87$	$23 \cdot 72$	$5 \cdot 47$	29.92	607	3684
$3 \cdot 68$	13.54	4•28	$18 \cdot 32$	$4 \cdot 88$	$23 \cdot 81$	$5 \cdot 48$	$30 \cdot 03$	6.08	36.97
$3 \cdot 69$	$13 \cdot 62$	$4 \cdot 29$	$18 \cdot 40$	$4 \cdot 89$	23.91	$5 \cdot 49$	$30 \cdot 14$	$6 \cdot 09$	$37 \cdot 09$
3.70	$13 \cdot 69$	$4 \cdot 30$	$18 \cdot 49$	$4 \cdot 90$	$24 \cdot 01$	$5 \cdot 50$	$30 \cdot 25$	$6 \cdot 10$	$37 \cdot 21$
$3 \cdot 71$	$13 \cdot 76$	$4 \cdot 31$	$18 \cdot 58$	$4 \cdot 91$	$24 \cdot 11$	$5 \cdot 51$	$30 \cdot 36$	$6 \cdot 11$	$37 \cdot 33$
3•72	$13 \cdot 84$	$4 \cdot 32$	$18 \cdot 66$	$4 \cdot 92$	24-21	$5 \cdot 52$	$30 \cdot 47$	$6 \cdot 12$	37.45
$3 \cdot 73$	$13 \cdot 91$	$4 \cdot 33$	$18 \cdot 75$	$4 \cdot 93$	$24 \cdot 30$	$5 \cdot 53$	30.58	613	$37 \cdot 58$
$3 \cdot 74$	13.99	$4 \cdot 34$	$18 \cdot 84$	$4 \cdot 94$	$24 \cdot 40$	$5 \cdot 54$	$30 \cdot 69$	$6 \cdot 14$	$37 \cdot 70$
$3 \cdot 75$	$14 \cdot 06$	$4 \cdot 35$	$18 \cdot 92$	$4 \cdot 95$	$24 \cdot 50$	$5 \cdot 55$	$30 \cdot 80$	6-15	$37 \cdot 82$
$3 \cdot 76$	14•14	$4 \cdot 36$	$19 \cdot 01$	$4 \cdot 96$	$24 \cdot 60$	$5 \cdot 56$	30.91	$6 \cdot 16$	37.95
$3 \cdot 77$	$14 \cdot 21$	$4 \cdot 37$	$19 \cdot 10$	$4 \cdot 97$	$24 \cdot 70$	$5 \cdot 57$	31.02	$6 \cdot 17$	38.07
3.78	$14 \cdot 69$	$4 \cdot 38$	$19 \cdot 18$	$4 \cdot 98$	$24 \cdot 80$	$5 \cdot 58$	$31 \cdot 14$	6.18	$38 \cdot 19$
$3 \cdot 79$	$14 \cdot 36$	$4 \cdot 39$	19.27	$4 \cdot 99$	24.90	$5 \cdot 59$	$31 \cdot 25$	$6 \cdot 19$	$38 \cdot 32$
$3 \cdot 80$	$14 \cdot 44$	$4 \cdot 40$	$19 \cdot 36$	$5 \cdot 00$	$25 \cdot 00$	$5 \cdot 60$	$31 \cdot 36$	$6 \cdot 20$	38.44
3.81	$14 \cdot 52$	$4 \cdot 41$	19.45	$5 \cdot 01$	$25 \cdot 10$	$5 \cdot 61$	$31 \cdot 47$	$6 \cdot 21$	$38 \cdot 56$
3.82	14.59	$4 \cdot 42$	$19 \cdot 54$	$5 \cdot 02$	25.20	5.62	$31 \cdot 58$	$6 \cdot 22$	$38 \cdot 69$
$3 \cdot 83$	14.67	$4 \cdot 43$	$19 \cdot 62$	$5 \cdot 03$	$25 \cdot 30$	$5 \cdot 63$	$31 \cdot 70$	$6 \cdot 23$	38.81
$3 \cdot 84$	14.75	$4 \cdot 44$	$19 \cdot 71$	$5 \cdot 04$	25.40	$5 \cdot 64$	31.81	$6 \cdot 24$	38.94
$3 \cdot 85$	14.82	4.45	$19 \cdot 80$	$5 \cdot 05$	$25 \cdot 50$	$5 \cdot 65$	31.92	$6 \cdot 25$	39.06
3.86	14.90	$4 \cdot 46$	$19 \cdot 89$	$5 \cdot 06$	$25 \cdot 60$	5.66	$32 \cdot 04$	6.26	$39 \cdot 19$
$3 \cdot 87$	14.98	$4 \cdot 47$	$19 \cdot 98$	$5 \cdot 07$	$25 \cdot 70$	$5 \cdot 67$	$32 \cdot 15$	$6 \cdot 27$	$39 \cdot 31$
3.88	$15 \cdot 05$	$4 \cdot 48$	$20 \cdot 07$	$5 \cdot 08$	25.81	$5 \cdot 68$	$32 \cdot 26$	$6 \cdot 28$	39.44
$3 \cdot 89$	$15 \cdot 13$	$4 \cdot 49$	$20 \cdot 16$	$5 \cdot 09$	25.91	5.69	$32 \cdot 38$	$6 \cdot 29$	$39 \cdot 56$
$3 \cdot 90$	15-21	$4 \cdot 50$	$20 \cdot 25$	$5 \cdot 10$	26.01	5.70	32.49	$6 \cdot 30$	$39 \cdot 69$
$3 \cdot 91$	15-29	$4 \cdot 51$	$20 \cdot 34$	$5 \cdot 11$	$26 \cdot 11$	5.71	$32 \cdot 60$	$6 \cdot 31$	39.82
$3 \cdot 92$	$15 \cdot 37$	$4 \cdot 52$	$20 \cdot 43$	$5 \cdot 12$	26.21	$5 \cdot 72$	32.72	6.32	39.94
3.93	$15 \cdot 44$	$4 \cdot 53$	20.52	$5 \cdot 13$	26.32	$5 \cdot 73$	$32 \cdot 83$	$6 \cdot 33$	$40 \cdot 07$
$3 \cdot 94$	$15 \cdot 52$	$4 \cdot 54$	$20 \cdot 61$	$5 \cdot 14$	26.42	$5 \cdot 74$	32.95	$6 \cdot 34$	$40 \cdot 20$
3.95	$15 \cdot 60$	$4 \cdot 55$	20.70	$5 \cdot 15$	26.52	$5 \cdot 75$	33.06	$6 \cdot 35$	$40 \cdot 32$
3.96	$15 \cdot 68$	$4 \cdot 56$	20.79	$5 \cdot 16$	26.63	$5 \cdot 76$	$33 \cdot 18$	$6 \cdot 36$	$40 \cdot 45$
3.97	$15 \cdot 76$	$4 \cdot 57$	20.88	$5 \cdot 17$	$26 \cdot 73$	$5 \cdot 77$	33•29	$6 \cdot 37$	$40 \cdot 58$
$3 \cdot 98$	$15 \cdot 84$	$4 \cdot 58$	20.98	$5 \cdot 18$	26.83	$5 \cdot 78$	$33 \cdot 41$	$6 \cdot 38$	$40 \cdot 70$
$3 \cdot 99$	15.92	$4 \cdot 59$	21.07	$5 \cdot 19$	26.94	5.79	33.52	$6 \cdot 39$	40.83
$4 \cdot 00$	16.00	$4 \cdot 60$	$21 \cdot 16$	$5 \cdot 20$	$27 \cdot 04$	$5 \cdot 80$	$33 \cdot 64$	$6 \cdot 40$	40.96
$4 \cdot 01$	$16 \cdot 08$	$4 \cdot 61$	$21 \cdot 25$	$5 \cdot 21$	27-14	$5 \cdot 81$	$33 \cdot 76$	$6 \cdot 41$	41.09
$4 \cdot 02$	$16 \cdot 16$	$4 \cdot 62$	$21 \cdot 34$	5-22	$27 \cdot 25$	$5 \cdot 82$	$33 \cdot 87$	$6 \cdot 42$	41.22
$4 \cdot 03$	$16 \cdot 24$	$4 \cdot 63$	21.44	$5 \cdot 23$	$27 \cdot 35$	$5 \cdot 83$	33.99	$6 \cdot 43$	41.34
$4 \cdot 04$	16.32	$4 \cdot 64$	21.53	$5 \cdot 24$	$27 \cdot 46$	$5 \cdot 84$	$34 \cdot 11$	$6 \cdot 44$	41.47
$4 \cdot 05$	$16 \cdot 40$	$4 \cdot 65$	21.62	$5 \cdot 25$	27.56	$5 \cdot 85$	34.22	6.45	41.60
$4 \cdot 06$	$16 \cdot 48$	$4 \cdot 66$	21.72	5.26	$27 \cdot 67$	$5 \cdot 86$	$34 \cdot 34$	$6 \cdot 46$	41.73
4.07	16.56	$4 \cdot 67$	21.81	$5 \cdot 27$	27.77	$5 \cdot 87$	$34 \cdot 46$	$6 \cdot 47$	41.86
$4 \cdot 08$	$16 \cdot 65$	$4 \cdot 68$	21.90	$5 \cdot 28$	27.88	$5 \cdot 88$	34.57	6.48	41.99
$4 \cdot 09$	16.73	$4 \cdot 69$	22.00	$5 \cdot 29$	27.98	589	34.69	6.49	$42 \cdot 12$
$4 \cdot 10$	16.81	$4 \cdot 70$	22.09	$5 \cdot 30$	28.09	$5 \cdot 90$	34.81	6.50	$42 \cdot 25$
$4 \cdot 11$	$16 \cdot 89$	4.71	22.18	$5 \cdot 31$	28.20	$5 \cdot 91$	34.93	6.51	42.38
$4 \cdot 12$	$16 \cdot 97$	4.72	2228	$5 \cdot 32$	28.30	$5 \cdot 92$	35.05	6.52	42.51
$4 \cdot 13$	$17 \cdot 06$	$4 \cdot 73$	22.37	$5 \cdot 33$	28.41	5.93	35.16	6.53	42.64
$4 \cdot 14$	$17 \cdot 14$	4.74	22.47	$5 \cdot 34$	28.52	5.94	35.28	$6 \cdot 54$	42.77
$4 \cdot 15$	17.22	$4 \cdot 75$	22.56	$5 \cdot 35$	28.62	5.95	35.40 35.5	$6 \cdot 55$	42.90
$4 \cdot 16$	17•31	$4 \cdot 76$	22.66	$5 \cdot 36$	28.73	$5 \cdot 96$	35.52	$6 \cdot 56$	$43 \cdot 03$
$4 \cdot 17$	$17 \cdot 39$	$4 \cdot 77$	22.75	$5 \cdot 37$	28.84	$5 \cdot 97$	35.64	6.57	$43 \cdot 16$
$4 \cdot 18$	$17 \cdot 47$	$4 \cdot 78$	22.85	$5 \cdot 38$	28.94	$5 \cdot 98$	35.76	6.58	$43 \cdot 30$
$4 \cdot 19$	17.56	$4 \cdot 79$	$\underline{22.94}$	$5 \cdot 39$ 5.40	29.05 $\mathbf{2 9 . 1 6}$	5.99 6.00	$35 \cdot 88$ 36.00	6.59 6.60	$\begin{aligned} & 43 \cdot 43 \\ & 43 \cdot 56 \end{aligned}$
$4 \cdot 20$	$17 \cdot 64$	$4 \cdot 80$	23.04	$5 \cdot 40$	$29 \cdot 16$	$6 \cdot 00$	$36 \cdot 00$	$6 \cdot 60$	$43 \cdot 56$

VOL. V. -4 D

TABLE IV. CON'TINUED.

Squares of Numbers to two Decimal Places.

Root.	Square	Root.	Square.	Root.	Square	Root.	Square.
$6 \cdot 60$	$43 \cdot 56$	$7 \cdot 20$	51.84	$7 \cdot 80$	60.84	$8 \cdot 40$	70.56
$6 \cdot 61$	$43 \cdot 69$	$7 \cdot 21$	51.98	7.81	61.00	8.41	70.73
6.62	$43 \cdot 82$	$7 \cdot 22$	$52 \cdot 13$	7.82	61.15	8.42	70.90
6.63	43.96	$7 \cdot 23$	52.27	7.83	$61 \cdot 31$	8.43	71.06
$6 \cdot 64$	44.09	$7 \cdot 24$	52.42	7.84	61.47	$8 \cdot 44$	71.23
6.65	$44 \cdot 22$	$7 \cdot 25$	52.56	$7 \cdot 85$	61.62	8.45	71.40
$6 \cdot 66$	$44 \cdot 36$	$7 \cdot 26$	52.71	$7 \cdot 86$	61.78	$8 \cdot 46$	71.57
6.67	$44 \cdot 49$	$7 \cdot 27$	52.85	$7 \cdot 87$	61.94	$8 \cdot 47$	71.74
$6 \cdot 68$	$44 \cdot 62$	$7 \cdot 28$	53.00	$7 \cdot 88$	62.09	$8 \cdot 48$	71.91
$6 \cdot 69$	$44 \cdot 76$	$7 \cdot 29$	$53 \cdot 14$	$7 \cdot 89$	$62 \cdot 25$	S. 49	72.08
6.70	$44 \cdot 89$	$7 \cdot 30$	$53 \cdot 29$	7.90	$62 \cdot 41$	$8 \cdot 50$	72.25
6.71	45.02	$7 \cdot 31$	53.44	7.91	62.57	8.51	72.42
6.72	$45 \cdot 16$	$7 \cdot 32$	53.58	7.92	62.73	$8 \cdot 52$	72.59
6.73	45.29	$7 \cdot 33$	53.73	793	62.88	8.53	$72 \cdot 76$
6.74	45.43	$7 \cdot 34$	53.88	$7 \cdot 94$	6304	8.54	72.93
6.75	45.56	$7 \cdot 35$	54.02	$7 \cdot 95$	63.20	$8 \cdot 55$	$73 \cdot 10$
6.76	45.70	$7 \cdot 36$	54.17	7.96	$63 \cdot 36$	$8 \cdot 56$	$73 \cdot 27$
6.77	45.83	$7 \cdot 37$	$54 \cdot 32$	$7 \cdot 97$	63.52	$8 \cdot 57$	$73 \cdot 44$
6.78	45.97	$7 \cdot 38$	$54 \cdot 46$	$7 \cdot 98$	63.68	$8 \cdot 58$	73.62
6.79	$46 \cdot 10$	$7 \cdot 39$	$54 \cdot 61$	7.99	63.84	8.59	73.79
6.80	$46 \cdot 24$	7.40	54.76	8.00	$64 \cdot 00$	$8 \cdot 60$	73.96
6.81	$46 \cdot 38$	$7 \cdot 41$	54.91	8.01	$64 \cdot 16$	$8 \cdot 61$	74.13
6.82	46.51	7×42	55.06	$8 \cdot 02$	$64 \cdot 32$	$8 \cdot 62$	$74 \cdot 30$
6.83	46.65	$7 \cdot 43$	$55 \cdot 20$	$8 \cdot 03$	$64 \cdot 48$	$8 \cdot 63$	$74 \cdot 48$
6.84	46.79	$7 \cdot 44$	$55 \cdot 35$	$8 \cdot 04$	$64 \cdot 64$	$8 \cdot 64$	74.65
6.85	46.92	$7 \cdot 45$	55.50	$8 \cdot 05$	$64 \cdot 80$	$8 \cdot 65$	74.82
6.86	$47 \cdot 06$	$7 \cdot 46$	55.65	8.06	64.96	$8 \cdot 66$	75.00
6.87	$47 \cdot 20$	$7 \cdot 47$	$55 \cdot 80$	8.07	65.12	$8 \cdot 67$	$75 \cdot 17$
6.88	$47 \cdot 33$	$7 \cdot 48$	55.95	8.08	$65 \cdot 29$	$8 \cdot 68$	$75 \cdot 34$
6.89	47.47	7.49	$56 \cdot 10$	$8 \cdot 09$	65.45	$8 \cdot 69$	75.52
6.90	47.61	7.50	56.25	$8 \cdot 10$	65.61	8.70	75.69
6.91	47.75	7.51	56.40	$8 \cdot 11$	65.77	8.71	75.86
6.92	47.89	7.52	56.55	$8 \cdot 12$	65.93	8.72	76.04
6.93	$48 \cdot 02$	7.53	56.70	8.13	66.10	8.73	76.21
6.94	$48 \cdot 16$	7.54	56.85	$8 \cdot 14$	6696	8.74	76.39
6.95 6.96	$48 \cdot 30$	7.55	57.00	$8 \cdot 15$	66.42	8.75	76.56
6.96	48.44	7.56	57.15	$8 \cdot 16$	66.59	8.76	76.74
6.97	48.58	7.57	$57 \cdot 30$	$8 \cdot 17$	66.75	8.77	76.91
6.98	48.72	7.58	57.46	$8 \cdot 18$	66.91	8.78	77.09
6.99 7.00	48.86	7.59	$57 \cdot 61$	$8 \cdot 19$	67.08	8.79	$77 \cdot 26$
7.00 7.01	49.00	7.60	57.76	$8 \cdot 20$	67.24	8.80	$77 \cdot 44$
7.01 7.02	49.14	7.61	57.91	$8 \cdot 21$	67.40	8.81	77.62
7.03	$49 \cdot 28$	7.62	58.06	$8 \cdot 22$	67.57	8.82	77.79
7.04	49.56	7.63 7.64	58.22	823 8.24	67.73 67.90	8.83 8.84	77.97
705	49.70	7.65	58.52	$8 \cdot 25$	68.06	8.85	78.32
7.06	49.84	$7 \cdot 66$	58.68	$8 \cdot 26$	68.23	8.86	78.50
7.07	49.98	7.67	58.83	$8 \cdot 27$	68.39	$8 \cdot 87$	78.68
7.08	$50 \cdot 13$	7.68	58.98	$8 \cdot 28$	68.56	8.88	78.85
7.09	$50 \cdot 27$	7.69	59.14	$8 \cdot 29$	68.72	8.89	79.03
$7 \cdot 10$	$50 \cdot 41$	7.70	$59 \cdot 29$	$8 \cdot 30$	68.89	$8 \cdot 90$	79.21
7.11	50.55	7.71	59.44	$8 \cdot 31$	69.06	8.91	79.39
7.12	50.69	7.72	$59 \cdot 60$	$8 \cdot 32$	$69 \cdot 22$	8.92	79.57
7.13	50.84	7.73	59.75	$8 \cdot 33$	$69 \cdot 39$	8.93	79.74
7.14	50.98	7.74	59.91	$8 \cdot 34$	69.56	8.94	79.92
7.15	$51 \cdot 12$	7.75	60.06	$8 \cdot 35$	69.72	8.95	$80 \cdot 10$
7.16	51.27	7.76	$60 \cdot 22$	$8 \cdot 36$	$69 \cdot 89$	8.96	$80 \cdot 28$
$7 \cdot 17$	51.41	7.77	60.37	$8 \cdot 37$	70.06	8.97	$80 \cdot 46$
$7 \cdot 18$	51.55	7.78	60.53	$8 \cdot 38$	$70 \cdot 22$	8.98	$80 \cdot 64$
$7 \cdot 19$	51.70	7.79	$60 \cdot 68$	$8 \cdot 39$	$70 \cdot 39$	8.99	80.82
$7 \cdot 20$	51.84	7.80	60.84	$8 \cdot 40$	70.56	$9 \cdot 00$	81.00

TABLE V.

	Arg. $\frac{p-u}{q-v}$ or $\frac{u}{v}$		Arg. $\frac{q-v}{p-u}$ or $\frac{v}{u}$			Arg. $\frac{p-u}{q-v}$ or $\frac{u}{v}$		Arg. $\frac{q-v}{p-u}$ or $\frac{v}{u}$	
Arg.	Arg. +	Arg. -	Arg. +	Arg. -	Arg.	Arg +	Arg. -	Arg. +	Arg. -
$\cdot 00$	$0^{\circ} \cdot 0$	$180^{\circ} \cdot 0$	$90^{\circ} \cdot 0$	$90^{\circ} \cdot 0$. 50	$26^{\circ} \cdot 6$	$153^{\circ} \cdot 4$	$63^{\circ} \cdot 4$	$116^{\circ} \cdot 6$
. 01	$0 \cdot 6$	1794	$89 \cdot 4$	$90 \cdot 6$	$\cdot 51$	$27 \cdot 0$	$153 \cdot 0$	$63 \cdot 0$	$117 \cdot 0$
. 02	$1 \cdot 1$	$178 \cdot 9$	$88 \cdot 9$	$91 \cdot 1$	-52	$27 \cdot 5$	$152 \cdot 5$	$62 \cdot 5$	$117 \cdot 5$
. 03	$1 \cdot 7$	$178 \cdot 3$	$88 \cdot 3$	$91 \cdot 7$	-53	$27 \cdot 9$	$152 \cdot 1$	$62 \cdot 1$	$117 \cdot 9$
$\cdot 04$	$2 \cdot 3$	$177 \cdot 7$	$87 \cdot 7$	$92 \cdot 3$. 54	$28 \cdot 4$	$151 \cdot 6$	$61 \cdot 6$	$118 \cdot 4$
. 05	$2 \cdot 9$	$177 \cdot 1$	$87 \cdot 1$	$92 \cdot 9$	-55	$28 \cdot 8$	$151 \cdot 2$	61 •2	$118 \cdot 8$
. 06	$3 \cdot 4$	$176 \cdot 6$	86.6	$93 \cdot 4$. 56	$\stackrel{29}{ } \cdot$	$150 \cdot 8$	$60 \cdot 8$	$119 \cdot 2$
.07	$4 \cdot 0$	$176 \cdot 0$	$86 \cdot 0$	$94 \cdot 0$. 57	$29 \cdot 7$	$150 \cdot 3$	$60 \cdot 3$	$119 \cdot 7$
-08	$4 \cdot 6$	$175 \cdot 4$	$85 \cdot 4$	$94 \cdot 6$. 58	$30 \cdot 1$	$149 \cdot 9$	$59 \cdot 9$	$120 \cdot 1$
.09	$5 \cdot 1$	$174 \cdot 9$	$84 \cdot 9$	$95 \cdot 1$	-59	305	$149 \cdot 5$	$59 \cdot 5$	$120 \cdot 5$
-10	$5 \cdot 7$	$174 \cdot 3$	$84 \cdot 3$	$95 \cdot 7$	-60	$31 \cdot 0$	$149 \cdot 0$	$59 \cdot 0$	$121 \cdot 0$
$\cdot 11$	$6 \cdot 3$	$173 \cdot 7$	$83 \cdot 7$	$96 \cdot 3$	$\cdot 61$	$31 \cdot 4$	$148 \cdot 6$	$58 \cdot 6$	$121 \cdot 4$
-12	$6 \cdot 8$	$173 \cdot 2$	$83 \cdot 2$	$96 \cdot 8$	62	31.8	$148 \cdot 2$	$58 \cdot 2$	121.8
$\cdot 13$	$7 \cdot 4$	$172 \cdot 6$	$82 \cdot 6$	$97 \cdot 4$	$\cdot 63$	$32 \cdot 2$	$147 \cdot 8$	$57 \cdot 8$	$122 \cdot 2$
-14	$8 \cdot 0$	$172 \cdot 0$	$82 \cdot 0$	$98 \cdot 0$	$\cdot 64$	$32 \cdot 6$	$147 \cdot 4$	$57 \cdot 4$	$122 \cdot 6$
-15	$8 \cdot 5$	$171 \cdot 5$	$81 \cdot 5$	$98 \cdot 5$	-65	$33 \cdot 0$	$147 \cdot 0$	$57 \cdot 0$	$123 \cdot 0$
$\cdot 16$	$9 \cdot 1$	$170 \cdot 9$	$80 \cdot 9$	$99 \cdot 1$	$\cdot 66$	$33 \cdot 4$	$146 \cdot 6$	$56 \cdot 6$	$123 \cdot 4$
$\cdot 17$	$9 \cdot 6$	$170 \cdot 4$	$80 \cdot 4$	$99 \cdot 6$	$\cdot 67$	$33 \cdot 8$	146	$56 \cdot 2$	123.8
$\cdot 18$	$10 \cdot 2$	169.8	$79 \cdot 8$	$100 \cdot 2$	-68	$34 \cdot 2$	$145 \cdot 8$	$55 \cdot 8$	$124 \cdot 2$
$\cdot 19$	$10 \cdot 8$	169 . 2	79 -2	$100 \cdot 8$	-69	$34 \cdot 6$	$145 \cdot 4$	$55 \cdot 4$	$124 \cdot 6$
$\cdot 20$	$11 \cdot 3$	$168 \cdot 7$	$78 \cdot 7$	$101 \cdot 3$	$\cdot 70$	$35 \cdot 0$	$145 \cdot 0$	$55 \cdot 0$	1250
$\cdot 21$	$11 \cdot 9$	$168 \cdot 1$	$78 \cdot 1$	$101 \cdot 9$. 71	$35 \cdot 4$	$144 \cdot 6$	$54 \cdot 6$	$125 \cdot 4$
-22	$12 \cdot 4$	$167 \cdot 6$	$77 \cdot 6$	$102 \cdot 4$	$\cdot 72$	$35 \cdot 8$	$144 \cdot 2$	$54 \cdot 2$	$125 \cdot 8$
$\cdot 23$	$13 \cdot 0$	$167 \cdot 0$	$77 \cdot 0$	$103 \cdot 0$	$\cdot 73$	$36 \cdot 1$	$143 \cdot 9$	$53 \cdot 9$	$126 \cdot 1$
$\cdot 24$	$13 \cdot 5$	$166 \cdot 5$	$76 \cdot 5$	$103 \cdot 5$	$\cdot 74$	$36 \cdot 5$	$143 \cdot 5$	$53 \cdot 5$	$126 \cdot 5$
$\cdot 25$	$14 \cdot 0$	$166 \cdot 0$	$76 \cdot 0$	$104 \cdot 0$.75	$36 \cdot 9$	$143 \cdot 1$	$53 \cdot 1$	$126 \cdot 9$
-26	$14 \cdot 6$	$165 \cdot 4$	$75 \cdot 4$	$104 \cdot 6$	$\cdot 76$	$37 \cdot 2$	$142 \cdot 8$	$52 \cdot 8$	127:2
$\cdot 27$	$15 \cdot 1$	$164 \cdot 9$	$74 \cdot 9$	$105 \cdot 1$	$\cdot 77$	$37 \cdot 6$	$142 \cdot 4$	$52 \cdot 4$	$127 \cdot 6$
$\cdot 28$	$15 \cdot 6$	$164 \cdot 4$	$74 \cdot 4$	$105 \cdot 6$	$\cdot 78$	$38 \cdot 0$	$142 \cdot 0$	$52 \cdot 0$	$128 \cdot 0$
$\cdot 29$	$16 \cdot 2$	$163 \cdot 8$	$73 \cdot 8$	$106 \cdot 2$	79	$38 \cdot 3$	$141 \cdot 7$	$51 \cdot 7$	$128 \cdot 3$
- 30	$16 \cdot 7$	$163 \cdot 3$	$73 \cdot 3$	$106 \cdot 7$. 80	$38 \cdot 7$	$141 \cdot 3$	$51 \cdot 3$	$128 \cdot 7$
$\cdot 31$	$17 \cdot 2$	$162 \cdot 8$	$72 \cdot 8$	$107 \cdot 2$. 81	$39 \cdot 0$	$141 \cdot 0$	$51 \cdot 0$	$129 \cdot 0$
$\cdot 32$	$17 \cdot 7$	$162 \cdot 3$	$72 \cdot 3$	$107 \cdot 7$. 82	$39 \cdot 4$	$140 \cdot 6$	$50 \cdot 6$	129 - 4
$\cdot 33$	$18 \cdot 3$	$161 \cdot 7$	$71 \cdot 7$	$108 \cdot 3$. 83	$39 \cdot 7$	$140 \cdot 3$	$50 \cdot 3$	$129 \cdot 7$
$\cdot 34$	$18 \cdot 8$	$161 \cdot 2$	$71 \cdot 2$	$108 \cdot 8$. 84	$40 \cdot 0$	$140 \cdot 0$	$50 \cdot 0$	$130 \cdot 0$
-35	$19 \cdot 3$	$160 \cdot 7$	$70 \cdot 7$	$109 \cdot 3$	-85	$40 \cdot 4$	$139 \cdot 6$	$49 \cdot 6$	$130 \cdot 4$
- 36	$19 \cdot 8$	$160 \cdot 2$	$70 \cdot 2$	$109 \cdot 8$	$\cdot 86$	$40 \cdot 7$	$139 \cdot 3$	$49 \cdot 3$	$130 \cdot 7$
$\cdot 37$	$20 \cdot 3$	$159 \cdot 7$	$69 \cdot 7$	$110 \cdot 3$. 87	$41 \cdot 0$	$139 \cdot 0$	$49 \cdot 0$	$131 \cdot 0$
$\cdot 38$	$20 \cdot 8$	$159 \cdot 2$	$69 \cdot 2$	$110 \cdot 8$	$\cdot 88$	$41 \cdot 3$	$138 \cdot 7$	$48 \cdot 7$	$131 \cdot 3$
- 39	$21 \cdot 3$	$158 \cdot 7$	$68 \cdot 7$	$111 \cdot 3$. 89	$41 \cdot 7$	$138 \cdot 3$	$48 \cdot 3$	$131 \cdot 7$
. 40	$21 \cdot 8$	$158 \cdot 2$	$68 \cdot 2$	111.8	. 90	$42 \cdot 0$	$138 \cdot 0$	$48 \cdot 0$	$132 \cdot 0$
$\cdot 41$	$22 \cdot 3$	$157 \cdot 7$	$67 \cdot 7$	$112 \cdot 3$.91	$42 \cdot 3$	$137 \cdot 7$	$47 \cdot 7$	$132 \cdot 3$
. 42	$22 \cdot 8$	$157 \cdot 2$	$67 \cdot 2$	$112 \cdot 8$. 92	$42 \cdot 6$	$137 \cdot 4$	$47 \cdot 4$	$132 \cdot 6$
. 43	$23 \cdot 3$	$156 \cdot 7$	$66 \cdot 7$	$113 \cdot 3$. 93	$42 \cdot 9$	$137 \cdot 1$	$47 \cdot 1$	$132 \cdot 9$
-44	$23 \cdot 7$	$156 \cdot 3$	$66 \cdot 3$	1137	. 94	$43 \cdot 2$	$136 \cdot 8$	$46 \cdot 8$	$133 \cdot 2$
-45	$24 \cdot 2$	$155 \cdot 8$	$65 \cdot 8$	$114 \cdot 2$. 95	$43 \cdot 5$	$136 \cdot 5$	$46 \cdot 5$	$133 \cdot 5$
$\cdot 46$	$24 \cdot 7$	$155 \cdot 3$	$65 \cdot 3$	$114 \cdot 7$. 96	$43 \cdot 8$	$136 \cdot 2$	$46 \cdot 2$	133 -8
. 47	$25 \cdot 2$	$154 \cdot 8$	$64 \cdot 8$	$115 \cdot 2$	$\cdot 97$	$44 \cdot 1$	$135 \cdot 9$	$45 \cdot y$	$134 \cdot 1$
. 48	$25 \cdot 6$	$154 \cdot 4$	$64 \cdot 4$	$115 \cdot 6$. 98	$44 \cdot 4$	$135 \cdot 6$	$45 \cdot 6$	$134 \cdot 4$
-49	$26 \cdot 1$	153.9	$63 \cdot 9$	$116 \cdot 1$.99	$44 \cdot 7$	$135 \cdot 3$	$45 \cdot 3$	$134 \cdot 7$
. 50	$26 \cdot 6$	$153 \cdot 4$	$63 \cdot 4$	$116 \cdot 6$	1.00	$45 \cdot 0$	$135 \cdot 0$	$45 \cdot 0$	$135 \cdot 0$

TABLE VI. Values of u and \mathbf{C} for Latitude of Philadelphia. Arg. The Hour Angle H .					
Arg.	Arg.	u.	C.	Arg.	Arg.
180°	0°	0.00	$7 \cdot 68$	90°	90°
179	1	$0 \cdot 13$	$7 \cdot 68$	89	91
178	2	$0 \cdot 27$	$7 \cdot 67$	88	92
177	3	0.40	$7 \cdot 67$	87	93
176	4	0.54	$7 \cdot 66$	86	94
175	5	0.67	$7 \cdot 65$	85	95
174	6	$0 \cdot 80$	$7 \cdot 63$	84	96
173	7	0.93	$7 \cdot 62$	83	97
172	8	1.07	$7 \cdot 60$	82	98
171	9	$1 \cdot 20$	7.58	81	99
170	10	1.33	$7 \cdot 56$	80	100
169	11	1.46	7.54	79	101
168	12	$1 \cdot 60$	7.51	78	102
167	13	1.73	$7 \cdot 48$	77	103
166	14	1.86	$7 \cdot 45$	76	104
165	15	1.99	$7 \cdot 41$	75	105
164	16	$2 \cdot 12$	$7 \cdot 38$	74	106
163	17	$2 \cdot 24$	$7 \cdot 34$	73	107
162	18	$2 \cdot 37$	$7 \cdot 30$	72	108
161	19	$2 \cdot 50$	$7 \cdot 26$	71	109
160	20	$2 \cdot 63$	7.21	70	110
159	21	2.75	$7 \cdot 17$	69	111
158	22	$2 \cdot 88$	$7 \cdot 12$	68	112
157	23	$3 \cdot 00$	$7 \cdot 07$	67	113
156	24	$3 \cdot 12$	$7 \cdot 01$	66	114
155	25	$3 \cdot 24$	6.96	65	115
154	26	$3 \cdot 36$	6.90	64	116
153	27	$3 \cdot 48$	6.84	63	117
152	28	$3 \cdot 60$	6.78	62	118
151	29	$3 \cdot 72$	6.71	61	119
150	30	$3 \cdot 84$	6.65	60	120
149	31	3.95	6.58	59	121
148	32	4.07	6.51	58	122
147	33	$4 \cdot 18$	6.44	57	123
146	34	$4 \cdot 29$	$6 \cdot 36$	56	124
145	35	$4 \cdot 40$	$6 \cdot 29$	55	125
144	36	$4 \cdot 51$	6.21	54	126
143	37	$4 \cdot 62$	$6 \cdot 13$	53	127
142	38	4.73	6.05	52	128
141	39	4.83	5.97	51	129
140	40	4.93	$5 \cdot 88$	50	130
139	41	$5 \cdot 04$	$5 \cdot 79$	49	131
138	42	$5 \cdot 14$	$5 \cdot 70$	48	132
137	43	$5 \cdot 24$	$5 \cdot 61$	47	133
136	44	$5 \cdot 33$	$5 \cdot 58$	46	134
135	45	$5 \cdot 43$	$5 \cdot 43$	45	135
		C.	u.		

TABLE VII. Values of b and f for Lati tude of Philadelphia. Arg. Sun's or Star's Dęclin.		
Arg.	b.	f.
0°	6.39	0.00
1	6.39	$0 \cdot 11$
2	6.38	$0 \cdot 22$
3	6.38	0.33
4	$6 \cdot 37$	0.45
5	$6 \cdot 36$	0.56
6	$6 \cdot 35$	0.67
7	6.34	0.78
8	$6 \cdot 33$	$0 \cdot 89$
9	$6 \cdot 31$	1.00
10	$6 \cdot 29$	$1 \cdot 11$
11	$6 \cdot 27$	$1 \cdot 22$
12	$6 \cdot 5$	$1 \cdot 33$
13	$6 \cdot 22$	$1 \cdot 44$
14	$6 \cdot 20$	$1 \cdot 55$
15	$6 \cdot 17$	$1 \cdot 65$
16	$6 \cdot 14$	1.76
17	$6 \cdot 11$	1.87
18	6.08	1.97
19	6.04	$2 \cdot 08$
20	6.00	218
21	5.96	$2 \cdot 29$
22	5.92	$2 \cdot 39$
23	$5 \cdot 88$	$2 \cdot 50$
24	$5 \cdot 84$	$2 \cdot 60$
25	$5 \cdot 79$	2.70
26	$5 \cdot 74$	$2 \cdot 80$
27	5.69	$2 \cdot 90$
28	$5 \cdot 64$	$3 \cdot 00$
29	$5 \cdot 59$	$3 \cdot 10$
30	$5 \cdot 53$	$3 \cdot 19$

TABLE VIII.	
Moon's reduced	Semidiame-
ter.	
Arg. Moon's Horizontal Pa-	
rallax.	

Correction of r, the Sun's Reduced Semidiameter. Arguments, $(f+g)$ at the Top, and Sun's Semidiameter at the Side.										
	1	2	3	4	5	6	7	8	9	10
$15 \prime 46^{\prime \prime}$ 48	.0046 46	$\cdot 0092$ 92	.0138 38	.0184 84	$\cdot 0230$ 30	$\cdot 0276$ 76	$\begin{array}{r}\cdot 0322 \\ \\ \hline 23\end{array}$	$\cdot 0368$ 69	$\cdot 0414$ 15	$\cdot 0460$ 61
1550	. 0046	. 0092	. 0139	. 0185	$\cdot 0231$. 0277	.0323	.0369	$\cdot 0416$	-0462
52	46	93	39	85	31	78	24	70	16	63
54	46	93	39	85	32	78	25	71	17	64
56	46	93	39	86	32	79	25	72	18	65
58	47	93	40	86	33	79	26	72	19	66
160	$\cdot 0047$	-0093	$\cdot 0140$	$\cdot 0187$	-0233	-0280	-0327	-0373	$\cdot 0420$	
2	47	94	40	87	34	81	27	74	21	68
4	47	94	41	87	34	81	28	75	22	68
6	47	94	41	88	35	82	29	76	23	69
8	47	94	41	88	35	82	29	76	23	70
1610	-0047	-0094	-0141	-0189	. 0236	-0283	-0330	$\cdot 0377$	-0424	$\cdot 0471$
12	47	94	42	89	36	83	31	78	25	72
14	47	95	42	89	37	84	31	79	26	73
16	47	95	42	90	37	85	32	80	27	74
18	48	95	43	90	38	85	33	80	28	75

YOL. V.- $\mathbf{4}$ E

